If you own a boat you know how important it is to protect your investment from wet, wind, weather, and the occasional bird dropping.

When buying a boat cover you need to consider the fabric, the fit, and the support.

Fabric

Not all fabrics are equal. There are four main factors that affect how durable, waterproof, breathable and stable the boat cover fabric is. The following factors affect your choice of selection.

Fabric Material

  1. Acrylic is a high end material, usually only in heavier weight fabrics (9 0z. plus).
  2. Polyester is often a mid to top range fabric, typically followed up with a three or five year warranty depending on the fabric weight.

The industry standard for a marine fabric is the venerable Sunbrella marine fabric, with the Pacific Blue being the single most popular color in marinas everywhere. All boat cover manufacturers offer either Sunbrella or Sunbrella equivalent fabrics.

Fabric Weight

  1. Fabric weight is measured in ounces per square yard.
  2. The weight of the fabric is often (but not always) telling of both the warranty and lifespan.
  3. Heavier fabrics are in the 9 oz. range, lightweight fabrics are in the 6.5 oz. range.

Fabric Weave

  1. How tightly woven the fabric is will indicate durability – a tighter fabric will last longer.
  2. How big the weaving threads (thread count) are will also indicate durability – the smaller the threads for a given weight will produce a more durable fabric.
  3. A 9 oz. tight weave fabric will last longer than a 13 oz. course weave fabric.

Color

  1. Of interest here; Marine or Pacific Blue (a middle blue) seems the most stable color.
  2. Reds and Yellows fade faster and wear out sooner than other colors.
Fabric Comparison Chart

Compare top fabrics and see which one fits your needs.

Fit

The better the fit the better your boat cover will function for you long term.

Trailerable boat covers often come with a tighter fit and straps to keep the cover snug while trailering. However, if you are just looking for a cover to keep your boat dry and aren’t planning on trailering it any time soon, Taylor Made Products makes a line of economy covers that may fit with your budget.

Westland, TaylorMade Products, and ShoreMaster all make trailerable boat covers.  These covers are either custom made to your boat’s make and model or come in a less-snug, semi-custom boat cover version that is less expensive.

Westland’s custom boat covers come with 1/4″ draw rope in the hem for a snug fit as well as 12 straps with buckles for securing the cover.  Taylor Made Products custom boat covers are secured with tie down straps made from 1″ wide heavy duty webbing, plus a nylon rope in the boat cover hem with patented rope lock for cinching the cover tight.

Support

Not your boat cover

Not your boat cover

You don’t want your boat to look like this. Supporting your boat cover when storing your boat for longer periods will help prolong the life of your boat cover and ultimately the life of your boat.

Get a pole. The single cheapest way to prop up the cover and prevent water pooling while also offering ventilation is with a vented pole assembly. They are incredibly easy to install in any cover, in virtually any location.

Taylor Made Boat Cover Support System

 Get a strap system. This is useful for the large cockpit expanse on most boats and will prevent the huge, tearing puddle that can happen. There are mounts at four corners connecting at the center with a pad on pole arrangement.

 Get some Bows. It is hard to beat a system of Boat Cover Bows with their matching Sockets for keeping the cover arched. This is the most foolproof way to keep the boat dry and it gives you a fighting chance against snow.Boat Cover Bows in Fiberglass or Wood

Covering your boat will ensure that it stays safe from the elements. Go2marine offers great prices on a wide selection of boat covers to fit your budget and your boat. Shop Now >

5 Ways to Heat Your Boat

November 20, 2013

 

5 Ways to Heat Your Boat

5 Ways to Heat Your Boat

 

5 Ways to Heat Your Boat

Cooling temperatures can keep you off the water, but adding a cabin heater can warm your cabin and heat up your next boat party. There are many ways of heating your boat, lets explore some of the more popular methods of staying warm that can keep you on the water all winter long.

1. AC Heaters

One of the simplest methods is to use an AC electric heater plugged into the boat’s AC electrical system. Many models are available, but heaters designed for a marine environment are usually preferable. Electric heaters designed for the marine market are usually made of stainless steel and/or other materials that resist the corrosive marine environment. They should have some sort of safety switch that will turn off the heater if it is tipped over. Some models are ignition protected, meaning that they are safe in gas-powered boat engine rooms. Models without ignition protection certification should not be used in areas where gasoline fumes are present, for obvious reasons. Electric heaters are best suited to boats that either have an AC generator or are usually at the dock where shore power is available. It is not practical to run an electric heater through your inverter, as it will draw the battery bank down too quickly.

2. Fuel Burning Heaters

Fuel burning heaters are among the most popular. Diesel heaters are commonly used with boats that use diesel fuel for propulsion engines as they have a ready source of fuel for the stove. They are available as bulkhead mount as well as floor mount, and may or may not have a fan to circulate the warmed air. All require a flue (stovepipe) that exits the cabin of your boat to dispose of the exhaust. Some heaters use natural convective draft, while others use fan-assisted draft to assist the removal of the toxic exhaust. Some of these heaters have a window, which allows you to enjoy the sight of the burning fire inside the stove. Propane (LPG) space heaters are available with “direct-vent” through fitting and flue cap, where the combustion process is completely isolated from the inside of the boat. Some of the better designs have an oxygen sensor, which will shut off the fuel supply if the oxygen in the cabin reaches a dangerously low level. A few solid fuel heaters burn charcoal briquettes or wood. These also require a ducted flue or stovepipe, as well as a source of wood or charcoal. In the past, coal was used, but modern solid fuel heaters are not designed for coal burning, as it burns too hot.

3. Hydronic Heat

Heated water can be circulated by a pump through tubes or hoses running through the boat to small radiators (heat exchangers) located in the cabin areas that require heating. The heat from the water is transferred to the air by small fans blowing through the heat exchangers, thus heating the boat. These fans can be thermostatically operated, so you can have separate zones of heating, allowing different levels of heat in the individual cabins. The source of the heated water can be from your main engine cooling system, heating coils installed in diesel or propane stoves or ranges, or it can come from your domestic water heater via heat exchangers installed in the water heater. Most marine water heater manufacturers offer optional heat exchanger loops in the water heater, allowing you to heat your galley and head domestic water from the engine, or the heating of water for space heating with the above-mentioned fans/heat exchangers. Multiple zones also are a feature of this type of heating, but add to the complexity and cost of the system. An added benefit is that the bilges, lockers and stowage areas that the hose or tubing runs through will be warmed and de-humidified, decreasing mold and odors common in the colder months.

Hydronic furnaces, which use diesel or kerosene fuel to heat water that is pumped throughout the boat in the same manner as the engine/water heater/radiator system described above. These heaters usually require less maintenance than the forced air furnaces, as the thermal cycling is not as extreme. These types of heaters have a delay between the starting of the heater and when you begin feeling the warming of the cabin, because the water takes some time to heat and circulate out to the heat exchangers and fan that will be warming the air. This hydronic method has many optional ways of connecting to other components, allowing the furnace to serve multiple heating purposes.

4. Forced Air Furnaces

There are several makes and models of forced air furnaces available. These heaters burn diesel or kerosene fuel, exhaust fumes are ducted overboard, and the heated air forced through ducts installed in the boat to distribute the heat. These require rather large ducting in the boat from the heater to the areas of the boat that require the heat. You will feel nearly immediate heat output once the furnace is started.

5. Head South

One other method should be mentioned, and that is to point the boat south, and keep going until it gets warm enough to sit on the deck in your swim suit. If you live in the cold northern climes you may even get a few extra willing crew members to come along for the voyage.

Whatever way you go, keeping your cabin cozy can keep you out on the water even when it’s cold outside.  Even the most thin-skinned companions may be persuaded to go out with a toasty heater onboard.

“Green” Anodes

February 14, 2013

pencil anode

Navalloy Pencil Anode

We use sacrificial anodes on our boats to lessen the electro-chemical reaction between the submerged metal of our boats and the water in which it is used. The difference in electrical potential exists between any two different metals submerged in an electrolyte. For boats, this electrolyte is fresh, brackish, or salt water. This electrical potential is similar to that of a battery, in that there is an electrical current that passes through the water from one terminal to another, or in our case, one metallic material to a different metallic material

An anode is the negative “terminal” and the other metals are the cathodes, or positive “terminal.” The anode is sacrificial because the anode slowly corrodes and dissolves in water, preventing the cathode from corroding and dissolving. Since the sacrificial anodes eventually disappear, they have to be replaced at regular intervals.

Traditionally the sacrificial anode was made of high purity zinc, which does a good job of protecting most of the submerged metals of boats. However, zinc is highly toxic, even in very small quantities, and all of the boat zincs dissolving in our lakes, rivers, estuaries and oceans has a significant effect on the natural environment. Zinc is highly toxic to plants, invertebrates, and vertebrate fish. It is also known to be toxic when inhaled during welding or soldering of galvanized metals, causing “zinc shakes,” “zinc chills,” “galvie flu” or “metal dust fever.”

Other materials traditionally used for sacrificial anodes are magnesium and aluminum. Magnesium has been used for boats located in fresh water, but should not be used on aluminum boats in salt water, as it will cause excessive voltage differences that can cause hydrogen bubbles to form on the metal that can lift paint off of the aluminum hull. Magnesium has a higher degree of anodic protection than zinc, but this higher protection is too great to be useful on aluminum boats or out-drives in salt water. Aluminum anodes have a slightly higher degree of protection than zinc, but without the harmful over-protection of magnesium. However, pure aluminum anodes will quickly form an oxide layer that electrically insulates the aluminum, defeating the purpose of the anode. (Zinc also forms oxides in fresh water, which insulates it and prevents it from working.) Toward the end of the twentieth century, certain aluminum alloys were developed to make them superior to other sacrificial anodes. One of these alloys is made of 95% Aluminum, 5% Zinc, and .02% Indium, and is marketed by Performance Metals Products under the trade name of “Navalloy®.”

hull anode

Navalloy Hull Anode

Performance Metals Products manufacturers a complete line of sacrificial anodes for boats of all types, using their aluminum alloy Navalloy.  Navalloy has many properties that make it ideal for sacrificial anodes on our boats. This alloy has all the advantages of aluminum, without the disadvantages of pure aluminum or the toxicity of zinc. Navalloy is lighter than zinc and lasts 30 to 50% longer than zinc anodes. It has a higher protection voltage than zinc, but not dangerously high as with magnesium.

Performance Metals Products anodes have built-in wear indicators in them. The more traditional anodes, such as hull anodes, shaft anodes, and rudder and trim tab anodes have a red dot cast under the surface of the anode, when the dot is visible; it is time to change the anode. Their pencil anodes, used on the inside of heat exchangers and other engine parts, have the anode cast around a stainless steel core, which allows the anode to dissolve without the remainder breaking off and potentially causing water blockage problems as it moves around loose in the engine. These pencil anodes also work well in hot water, typically found within the cooling circuits of marine engines, heat exchangers and refrigeration condensers. Zinc anodes provide greatly reduced protection in hot water. Zinc anodes form a non-porous layer when the boat is hauled out of the water, which must be cleaned before the boat is launched. Navalloy does not form this layer, and work immediately upon re-immersion in water.

Environmental agencies have determined that zinc anodes are a major cause of pollution in marinas. Maryland is currently considering phasing out the use of zinc anodes in favor of aluminum alloys to solve this problem with zinc in marinas and boatyards.

Navalloy anodes are made to military specification MIL-DTL-24779B(SH).

Mercury and Johnson/Evinrude/OMC started selling aluminum alloy anodes in the early 1990’s. Other outboard and out-drive manufacturers also are switching to aluminum anodes. Some of the manufacturers may void the warranty coverage of their products if zinc anodes have been used.

Since Navalloy anodes provide better protection, are less toxic, last longer, work in all waters and weigh less, are there any reasons to keep using zinc anodes?

shaft anode

Navalloy Shaft Anode

Mark McBride – February 14, 2013

Electrical Wire Terminations

January 29, 2013

In the boat and yachting electrical world, it is not enough to merely strip the insulation off the end of a wire and wrap it around a screw that gets tightened.  Wire terminals are the approved method of connecting wire ends to the source of electricity and to electrical devices that require it.

Marine wire has specific qualities that make it superior for use on boats and yachts.  Marine wire should be finely stranded copper, for flexibility, as marine wiring must be able to survive long periods of vibration without failure. The individual strands making up the wire should to be tin plated to resist corrosion. The wire insulation must be able to withstand the heat, moisture, salt, fuel, oil, acid, and abrasion which are usually present in this harsh environment.

Marine wire terminals also should be made of copper, and have tin plating for corrosion resistance. Marine wire terminals should be insulated and of the crimp-on type electrical connection.

The wire terminal must be selected to match the size (gauge) of terms and toolwire being used. In the smaller wire terminal sizes, the terminals are often color coded, RED for 22-18 ga., BLUE for 16-14 ga., and YELLOW for 10-12 ga. Always use the correct sized terminal for the wire gauge being used.

When using ring terminals, always select the correct ring terminal for the size of the fastener used to attach the terminal. It is important to maximize the surface area between the terminal fastener and the wire terminal itself to improve the current carrying capacity of the wire and terminal connection. A 3/8” ring terminal attached to a #10 screw doesn’t allow much surface area for the current to flow and has little resistance to bending or vibration. It is possible to modify the size of the ring terminal on some of the larger sizes. A 2/0 x ¼” ring terminal can be drilled out with a step drill to a 5/16”, 3/8”, or larger.  However, drilling out the terminal will remove the tin plating on the inside of the hole, which compromises the anti-corrosion properties of the plating.

There are actually two connections that need to be made for each wire terminal. The first is the ELECTRICAL connection,electrical crimp connecting which is made by crimping the middle part of the terminal sleeve to the bared wire strands with the appropriate section of the crimping tool. This section is usually labeled or color coded for the specific terminal size being used.  The second is the MECHANICAL connection, made by either crimping the end of the terminal sleeve to the insulation at the end of theinsulation crimp connecting wire before the bared strands with the appropriate section of the crimping tool, or by heating the adhesive lined heat shrink tubing around the terminal and wire end insulation.

It is essential to make the electrical crimp connection with enough force to tightly bond the terminal to the wire strands of the bared wire end. There should not be any play or wiggle between the terminal and the wire it is crimped to. It should be very difficult or impossible to pull the wire out of the terminal after it has been crimped to the wire end.

The mechanical connection is important because it moves the strain of flexing and vibration between the copper wire strands and the terminal to the connection of the terminal to the insulation, preventing the copper strands from work hardening and breaking when subjected to vibration and/or flexing.

The mechanical connection may be a second crimp to a crimping sleeve built into the terminal designed to crimp against completed crimpthe wire insulation. This connection uses a different section of the wire crimp tool than the electrical connection section. This section has a larger “hole” when closed, and allows the mechanical sleeve in the terminal to be crimped to the wire insulation without crushing the terminal as much as with the electrical connection crimp.

Another method of making the mechanical connection is with crimp-on terminals heat shrink before crimpsupplied with adhesive lined heat shrink tubing. The electrical crimp connection is the same, but the mechanical connection is made by shrinking the terminal heat shrink insulation around the terminal electrical connection using a heat source such as a heat gun or small flame. Be careful not to over heat the tubing if using a electrical crimp on heat shrink terminalflame. Hold the flame about an inch or so below the terminal connection and roll the terminal over the flame to evenly warm the heat shrink tubing. Smoking and blackening is a sign of overheating or heating too quickly. The heat will shrink the tubing to form a tight seal, and when enough heat has been applied the adhesive can usually be seen oozing out from the ends of the insulation. The heat shrink process adds the benefit of very good water protection at the wire termination.

heat shrinking ring terminal insulation with flame

If the terminal being used is of the type without heat shrink and without a mechanical crimp connection, a short length of the appropriate sized adhesive lined heat shrink tubing should be placed over the end of the wire before the terminal is crimped, andfinished heat shrink ring terminal heated to shrink around the terminal electrical connection and the wire insulation after crimp has been made. This will provide the necessary mechanical connection to the wire insulation as well as add water protection to the wire end and terminal.

Mark McBride –  January 29, 2013

The number one reason that drive systems go out of alignment is that the engine mounts are worn or have sagged. The engine sits lower and lower and moves around more so there is increased wear and vibration on the entire drive of the vessel.

Marine engine mounts can make the difference between a low vibration engine, mounted stable in your boat or an iron monster that shakes the hull, produces noise and may lead to damage. Broken, damaged or worn engine mounts are not always obvious when 100′s of pounds of static motor are sitting on the mounts. Excess vibration can be caused by many things, including; mounts that are too soft or hard, worn engine mounts or how the mounts are attached to the bed. Of course, there are other things that can cause vibration, including; misalignment of transmission to shaft, worn components (cutlass bearing, transmission) or damaged components (propeller, shaft, transmission).

The forces of a high revving, high horsepower modern marine engine are passed directly onto the engine mounts. Even small one cylinder diesels really pound the engine mounts. For all their apparent simplicity, engine mounts are subject to a number of forces:

  • Longitudinal – The forward / aft motion of the engine
  • Lateral – The side to side motion of the engine
  • Vertical – the up and down motion of the engine

Most of these forces on a motor mount act in a form of chaotic unison. Not only must the engine hold its own position based on motor and transmission weight, but it also must resist the shearing force of the propeller under thrust. What looks like a simple job for an engine mount gets complex, quickly when throttling up; the engine mounts on one side are ‘stretched’, one the other side they are compressed, they are also subjected to shear by the thrust of the prop. Now add to the equation of a boat throttling up in rolling seas, or depending on the vessel, being subjected to storm conditions or high-speed pounding. The simple combination of metal and rubber that makes up an engine mount sees real abuse in a harsh environment.

Figuring out what engine mount you need:

  • Number of mounts. Most marine engine/transmission units use 4 engine mounts, some smaller/older units use 3
  • Matching up the weight and horsepower to an engine mount
  • Match the Make Model of your engine

Once you know how many mounts you need and a data about the engine/transmission then nearly every modern marine engine can be found with The Engine Mount Cross-Reference Guide. In summary, should you feel that your system has gotten out of alignment, check your engine mounts first. It is the sagging engine that puts pressure on the cutlass and shaft seal and wears them to the point of needing replacement.

Marine controls are an essential part of any boat (including auxiliary powered sailboats). After the wheel or tiller, there is nothing else that you touch as much. Your marine controls connect you to the thrust and direction of movement of the vessel whether docking or out on the open water at full throttle. A control may operate the throttle or shift or both; several choices and options are available. Reliability, smoothness, accuracy and response are all features to look for in a marine control.

Shift / Throttle Functions of Marine controls:

Single Function / Single Lever (Controls Only One; Throttle or Shifter) – This is the simple lever that controls just the throttle or just the shifter. Some typical applications are with a Berkley Jet, this lever is the shifter and a foot pedal is used for throttle.

Dual Function / Dual Lever, Binnacle Mount Control

Dual Function / Dual Lever (Controls Throttle and Shift for Two Engines) – This control sees typical use with a twin-engine vessel and offers the simplest to use setup. Like all dual function controls, the lever controls both the shift and the throttle. As you push forward on the lever, the transmission engages and the engine throttles up.

Dual Function / Single Lever (Controls the Throttle and Shift) – By far the most common controller available for virtually every inboard, sterndrive and outboard application. This control is suitable for only one engine. The mounting options for this style control can range from helm stations to the side box controls on an outboard to sailboat cockpit controls. Like all dual function controls, the lever controls both the shift and the throttle. As you push forward on the lever, the transmission engages and the engine throttles up.

Single Function / Dual Lever (One lever controls throttle, the other lever controls shift) – A more traditional approach to controlling the throttle and shift. Some manufacturers do not recommend this type of control because you could throttle up (first) then slam the transmission into forward while the throttle is high! For twin engines, you simple mount two of these. Not for novices and can be dangerous when operated in a panic situation.

Control Mounting:

Traditional Runabout w/ Side Box Mount Control

Runabout, Outboard or Sterndrive Controls – Smaller boats typically use a side box mount controller, fitted to the right of the helm. With the exception of some jet boats, most of these controls are dual function, single lever. There are specific controllers made for Mercury / Mariner / Force as well as OMC / Johnson / Evinrude. You may be able to use a more generic controller by choosing cables that have end options that work with your system.

Sailboat Controls - Most sailboats use a flush side mount marine control. Older sailboats typically operated with Morse single function / dual lever controls. Most sailboat auxiliaries setup since the 1980′s use the dual function / single lever control to manage the throttle / shift in a smooth fashion.

Inboard and Larger Vessels – These controls are most often binnacle mounted controls that may have two stations (upper helm and lower cabinhouse) and twin-engine setups. The common traditional setup is a single function / dual lever control at the helm station. Owners often want more response and a ‘make sense system’ to help when maneuvering larger vessels with twin engines.

With the right controls, nearly anyone can take the helm* – note that the boat below is not under power!

Upper Control Station - Twin Engine, Single Function / Dual Lever

There are four main manufacturers offering replacement throttle, shift and control cables for the boat owner. The choices between these are often small construction details.

Teleflex TFXTREME Control Cables

Teleflex - Teleflex bought up the original Morse division of control cables. Most boats over 20 years old will have Morse controls and cables. Teleflex has upgraded the original CC series cable to the new design CCX TFXTREME. Teleflex’s unique TFXTREME technology incorporates a patented splined core. Ridges on the core allow a close fit with the cable’s inner liner, but with minimum contact, so the core glides back and forth smoothly like a skater on ice.

The Teleflex TFXTREME control cable was designed because of the original ‘issues’ with traditional marine cables. Traditional cables vary by the stiffness of the core wire and how tightly it fits in the casing. More flexible core/looser fit has an easier feel, but allows more lost motion. This approach leads to an overall sloppy feel, RPM loss or difficult gear engagement. Stiffer core/tighter fit offers less lost motion, but is harder to move. With longer and more complex runs, cable movement becomes progressively more difficult. Thus the classic trade-offs that have existed in control cable design have been resolved with the Teleflex TFXTREME.

Uflex MACH Control Cables

Uflex - Uflex control cables are relatively new on the scene, offering some of the most popular OEM control cables in their own high performance design. To reduce the friction the MACH series control cable, Uflex use’s a multi layered core to shield design that allows for high efficiency and smooth operation. The maintenance free cables are wrapped in a long life, high resistance blue outer jacket to offer protection against abrasion, UV and chemicals.

Glendinning PRO-X Control Cables

Glendinning - Glendinning has also come on strong in the world of replacement control cables. Glendinning Pro-X cables offer a core which is very stiff while very having a great deal of flexibility is the heart of the Pro-X cable, providing minimal lost motion with high-efficiency. Glendinning builds a maintenance free control cable with a high density polyethylene liner around the central armored core. The entire multi-layer cable is in a corrosion resistant case with protective end seals for long life.

Felstead Marine Control Cables

Felstead - Felstead control cables are used in commercial vehicles, agriculture, construction and, of course, marine. Chances are, you handled something using a Felstead cable recently. They are reliable enough for parking brake systems that last the life of an automobile, truck and bus and are rugged enough for use in commercial vessels. Although not tailored for the smaller outboard industry, the 33C, 40 Series and 60 Series mirror the original Morse control cables and are found in vessels everywhere. Long life and smooth operation are assured with such features as rod bearing (the only in the industry) and a sealed, multi-layer cable design.

Ready to buy a throttle, shift, control cable? Check out the Go2marine’s guide to Making Sense of Marine Control Cables.

Follow

Get every new post delivered to your Inbox.

Join 119 other followers